Deep Successor Reinforcement Learning
نویسندگان
چکیده
Learning robust value functions given raw observations and rewards is now possible with model-free and model-based deep reinforcement learning algorithms. There is a third alternative, called Successor Representations (SR), which decomposes the value function into two components – a reward predictor and a successor map. The successor map represents the expected future state occupancy from any given state and the reward predictor maps states to scalar rewards. The value function of a state can be computed as the inner product between the successor map and the reward weights. In this paper, we present DSR, which generalizes SR within an end-to-end deep reinforcement learning framework. DSR has several appealing properties including: increased sensitivity to distal reward changes due to factorization of reward and world dynamics, and the ability to extract bottleneck states (subgoals) given successor maps trained under a random policy. We show the efficacy of our approach on two diverse environments given raw pixel observations – simple grid-world domains (MazeBase) and the Doom game engine. 2
منابع مشابه
Eigenoption Discovery through the Deep Successor Representation
Options in reinforcement learning allow agents to hierarchically decompose a task into subtasks, having the potential to speed up learning and planning. However, autonomously learning effective sets of options is still a major challenge in the field. In this paper we focus on the recently introduced idea of using representation learning methods to guide the option discovery process. Specificall...
متن کاملRunning head: SUCCESSOR REPRESENTATION and TEMPORAL CONTEXT The Successor Representation and Temporal Context
The successor representation was introduced into reinforcement learning by Dayan (1993) as a means of facilitating generalization between states with similar successors. Although reinforcement learning in general has been used extensively as a model of psychological and neural processes, the psychological validity of the successor representation has yet to be explored. An interesting possibilit...
متن کاملAdvantages and Limitations of using Successor Features for Transfer in Reinforcement Learning
One question central to Reinforcement Learning is how to learn a feature representation that supports algorithm scaling and re-use of learned information from different tasks. Successor Features approach this problem by learning a feature representation that satisfies a temporal constraint. We present an implementation of an approach that decouples the feature representation from the reward fun...
متن کاملThe Successor Representation and Temporal Context
The successor representation was introduced into reinforcement learning by Dayan ( 1993 ) as a means of facilitating generalization between states with similar successors. Although reinforcement learning in general has been used extensively as a model of psychological and neural processes, the psychological validity of the successor representation has yet to be explored. An interesting possibil...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.02396 شماره
صفحات -
تاریخ انتشار 2016